

II SEMANA UNIVERSITÁRIA DA UNILAB

"Práticas Locais, Saberes Globais"
I ENCONTRO DE PRÁTICAS DOCENTES E DISCENTES
II ENCONTRO DE INICIAÇÃO À DOCÊNCIA
II ENCONTRO DE EDUCAÇÃO À DISTÂNCIA
III ENCONTRO DE EXTENSÃO, ARTE E CULTURA
IV ENCONTRO DE INICIAÇÃO CIENTÍFICA
I ENCONTRO DE PÓS-GRADUAÇÃO

EXTRAÇÃO DE ATIVIDADE LIPOLÍTICA DA CASCA DO ABACAXI

Mauro M. de Oliveira ¹ Carla Patrícia C. Oliveira ² Aluísio M. da Fonseca ³

¹Universidade da Integração Internacional da Lusofonia Afro-Brasileira, MASTS, e-mail: mauropandi@gmail.com;

²Universidade da Integração Internacional da Lusofonia Afro-Brasileira, IEDS, e-mail: carlla.patricia.13@gmail.com;

³Universidade da Integração Internacional da Lusofonia Afro-Brasileira, MASTS/ICEN, e-mail: aluisiomf@unilab.edu.br.

RESUMO: As lipases (EC 3.1.1.3) são enzimas capazes de hidrolisar óleos e gorduras e catalisar reações de síntese (esterificação, transesterificação). São obtidas dos animais, vegetais ou microrganismos. As lipases microbianas são as mais importantes, inclusive para produção de biodiesel. As lipases vegetais têm ganho notoriedade devido à sua facilidade de preparação e uso, mantendo a mesma atividade catalítica. A bromelina, enzima encontrada no abacaxi (*Ananas comosus*), possui potencial como fonte de lipases. Este trabalho tem como objetivo extrair atividade hidrolítica da casca do abacaxi.

Palavras-chave: Biodiesel, Lipase, Abacaxi.