

Uso de cobertura morta vegetal para melhoria das condições de canteiros para produção de hortaliças

Lucas Gomes de Souza¹, Francisco Lopes Evangelista², Gabriel José Lima da Silveira³, Susana Churka Blum⁴

Resumo: O presente trabalho teve como objetivo avaliar o teor de água do solo e produção de rúcula (Eruca sativa) em função de coberturas mortas vegetais. Para isto foram realizados dois experimentos no Campus da Liberdade da UNILAB, Redenção-CE. No experimento 1 o delineamento foi em blocos ao acaso em esquema de parcela subdividida com cinco tratamentos e quatro repetições. Canteiros com e sem irrigação receberam os seguintes tratamentos secundários: solo sem cobertura, casca de arroz, bagaço de cana-de-açúcar, capim espontâneo e serragem. Os parâmetros avaliados foram: taxa de decomposição das coberturas e teor de água do solo aos 20, 30 e 60 dias após a aplicação das coberturas. No experimento 2 o delineamento foi em blocos ao acaso com cinco tratamento e quatro repetições, utilizando-se os mesmos tratamentos já descritos, em canteiro irrigado para a produção de rúcula. Os parâmetros analisados foram: teor de água do solo aos 20 dias e massa fresca e seca da parte aérea (PA) aos 50 dias após semeadura da cultura da rúcula. No experimento 1 a cobertura com serragem apresentou a menor taxa de decomposição, as coberturas com casca de arroz e serragem proporcionaram maior teor de água no solo aos 40 e 60 dias não apresentando diferença significativa entre os outros tratamentos. No experimento 2 para a variável teor de água no solo a cobertura bagaço de cana-de-açúcar apresentou melhores resultados aos 20 dias e não houve diferença significativa entre as coberturas para a produção de massa fresca ou massa seca da parte aérea das plantas de rúcula.

Palavras-chave: Resíduos, horticultura, conservação do solo, Eruca sativa.

INTRODUÇÃO

Na prática da cobertura morta o material orgânico é depositado sobre a superfície do solo, sem que a ele seja incorporado, na qual procura-se influenciar positivamente as qualidades físicas, químicas e biológicas do solo, criando condições ótimas para o crescimento radicular (Souza; Pereira, 2011). Neste sentido, recomenda-se a aplicação de restos vegetais para a formação de cobertura morta sobre a superfície erodida até que as espécies herbáceas, arbustivas e arbóreas implantadas se estabeleçam e garantam boa proteção ao solo, agindo como suporte na recuperação de áreas degradadas (Chaves et al, 2012).

¹ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural. Graduando em agronomia, e-mail: lucasgomes.pacoti@hotmail.com

² Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural. Graduando em agronomia, e-mail: franciscolopes300@gmail.com

³ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural. Graduando em agronomia, e-mail: gabriel.lima.silveira@hotmail.com

⁴ Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural. Professora Adjunto A, e-mail: scblum@unilab.edu.br.

Para a cobertura do solo podem ser utilizados diversos materiais provenientes de restos de culturas, resíduos orgânicos industriais, serragens, e materiais sintéticos como o plástico, papéis e metais (Alvarenga; Cruz; Viana, 2011); (Queiroga et al., 2002). O seu emprego traz vantagens como alteração do regime térmico do solo, conservação da água do solo, redução da perda de nutrientes por lixiviação (Carter & Johnson,1988), além do controle de plantas invasoras melhorando o desempenho das culturas por meio da redução da competição por nutrientes (Carvalho; Filho, 2000).

O presente trabalho tem como objetivo avaliar a utilização de cobertura morta vegetal sobre o teor de água do solo e sobre a emergência de plantas daninhas em canteiros em pousio com e sem irrigação (Experimento I) e avaliar o teor de água do solo e a produção de rúcula (*Eruca sativa*) em função de diferentes coberturas mortas vegetais (Experimento II).

METODOLOGIA

Experimento I - Coberturas mortas vegetais em dois canteiros (irrigado e não irrigado).

O experimento foi conduzido na horta didática do Campus da Liberdade da UNILAB, Redenção-CE. Utilizaram-se diferentes coberturas mortas vegetais disponíveis na região (casca de arroz, bagaço de cana-de-açúcar, capim espontâneo e serragem de *Manilkara huberi*, (Ducke) A. Chev, como coberturas em dois canteiros de 12,7m² em pousio, sendo um irrigado e o outro sem irrigação.

O delineamento adotado foi em blocos ao acaso em esquema de parcela subdividida com cinco tratamentos e quatro repetições, onde a irrigação foi o tratamento principal e as coberturas mortas vegetais os tratamentos secundários. As coberturas foram aplicadas sobre a superfície do solo, cobrindo totalmente a área dos canteiros. Após a aplicação das coberturas, os materiais foram pesados a fim de se padronizar a quantidade de material colocada em cada parcela.

Aos 20, 40 e 60 dias avaliaram-se a taxa de decomposição do material vegetal e o o teor de água do solo (em massa). Os dados foram submetidos à análise de variância utilizando o esquema de parcelas subdivididas onde a irrigação era o tratamento principal e as coberturas vegetais os tratamentos secundários. Quando houve interação efetuou-se o desdobramento. As médias foram comparadas pelo teste de Tukey a 5% de probabilidade, com uso do programa estatístico Assistat, versão 7.7 beta (Silva & Azevedo, 2006).

Experimento II – Coberturas mortas vegetais na produção de rúcula

O experimento foi conduzido na área externa do bloco do Campus da Liberdade da UNILAB. O delineamento foi em blocos ao acaso com 05 tratamentos e 04 repetições. Utilizaram-se mudas de rúcula (*Eruca sativa*) e diferentes coberturas mortas descritas anteriormente, em parcelas de 0,63m². Primeiramente foram produzidas 1296 mudas de rúcula cultivadas em bandejas (9x18 células com volume de 50 cm³) com substrato feito a partir de húmus + solo arenoso, na proporção de 1:1, respectivamente. Foram utilizadas sementes comerciais com taxa de germinação de 85% em ambiente protegido com sombrite fator 50%.

Com 15 dias efetuou-se o transplante de 600 mudas para o canteiro, ficando 120 mudas para cada tratamento e 30 mudas para cada repetição. As plantas foram cultivadas no sistema de produção orgânico. Durante o ciclo da cultura não houve a necessidade da aplicação de nenhum produto para controle de insetos ou doenças. Aos 50 dias após semeadura (DAS) efetuou-se a colheita de 10 plantas de rúcula nas linhas de cultivo de forma aleatória para realizar a avaliação de massa fresca da parte aérea (MFPA) e massa seca da parte aérea (MSPA). Também se realizou a coleta de solo para determinação do teor de água no solo.

Os dados foram submetidos à análise de variância utilizando o esquema de blocos ao acaso. As médias foram comparadas pelo teste de Tukey a 5% de probabilidade, com uso do programa estatístico Assistat, versão 7.7 beta (Silva & Azevedo, 2006).

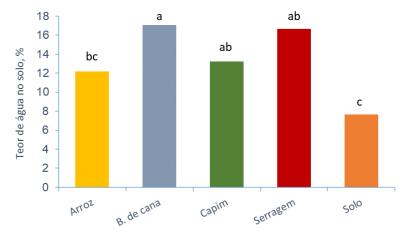
RESULTADOS E DISCUSSÃO

Experimento I

De acordo com a análise variância, houve interação entre os tratamentos principais (canteiros irrigado e não irrigado) e os tratamentos secundários (cobertura morta vegetal) na taxa de decomposição do material (acomodados em "litter bags") avaliada aos 20, 40 e 60 dias (Tabela 1). Para esta variável, efetuou-se o desdobramento da interação. Para a variável teor de água no solo, não houve diferenças significativas entre os tratamentos principais e secundários.

Tabela 1. Taxa de decomposição de coberturas mortas vegetais em função dos tratamentos aplicados nas avaliações aos 20, 40 e 60 dias após a deposição nos canteiros irrigado e sem irrigação.

		Decomposição (%)					
		Avaliação aos 20 dias					
Canteiros	Casca de arroz	Bagaço de cana	Serragem	Capim espontâneo			
Irrigado	12,7 aB	20,1 Aa	7,6 aB	13,5 aAB			


Não irrigado	15,6 aAB	17,4 Aa	9,5 aBC	5,1 bC		
	Avaliação aos 40 dias					
Irrigado	14,5 aB	28,9 Aa	8,5 aC	25,1 aA		
Não irrigado	17,1 aAB	21,7 Ba	10,8 aC	12,7 bBC		
Avaliação aos 60 dias						
Irrigado	18,5 aB	36,5 aA	9,2 aC	38,7 aA		
Não irrigado	17,6 aBC	29,5 bA	11,9 aC	23,8 bAB		

^{*}Letras iguais minúsculas nas colunas não diferem entre si pelos Testes de Tukey a 5% de probabilidade.

Experimento II

De acordo com a análise de variância, houve efeito das coberturas mortas vegetais no teor de água do solo avaliado aos 20 dias após a deposição dos tratamentos (Figura 1).

Figura 1 – Teor de água no solo em função das coberturas mortas vegetais avaliado aos 20 dias após a deposição dos tratamentos.

De acordo com a análise de variância não houve efeito significativo para as variáveis massa fresca e massa seca de parte aérea. Possivelmente as coberturas não expressaram seu efeito nos tratamentos realizados, devido ao pouco tempo em que foram adicionadas no canteiro após o transplantio das mudas, que foi de apenas 20 dias. Reghin et al., (2004) em experimento com rúculas observaram que mudas produzidas em bandejas, em diferentes estádios de desenvolvimento e apresentando diferenças nas variáveis de comprimento da parte aérea (cm), matéria fresca da parte aérea, matéria fresca da parte aérea, quando transplantadas em campo, estabeleceram-se e desenvolveram-se similarmente, obtendo-se na colheita plantas com qualidades semelhantes.

CONCLUSÕES

Apesar de não ser possível observar influência das diferentes coberturas de solo na melhoria da produtividade da cultura da rúcula no primeiro corte, verificou-se que as coberturas

mortas vegetais melhoram a retenção de água no solo, o que certamente contribui para o desenvolvimento de hortaliças principalmente nos períodos de seca.

REFERÊNCIAS

ALVARENGA, R.C; CRUZ, J.C; VIANA, H.M. Plantas de cobertura de solo. Embrapa Milho e Sorgo. Sistema de Produção, 1679-012X Versão Eletrônica - 7ª edição, 2011. Disponível em: http://www.cnpms.embrapa.br/publicacoes/milho_7_ed/ferverde.htm. Acesso em: 26 de maio de 16.

CARVALHO, A.M; FILHO, J.S. Uso de adubos verdes como cobertura do solo. Boletim de pesquisa-Embrapa cerrados, n.11, p. 1-20 1518-0417, 2000.

CARTER, I.; JOHNSON, C. Influence of differente types of mulches on eggplant production. **Hortscience**, v. 23, p. 143-145, 1988.

CHAVES, T.A; ANDRADE, A.G; SOUSA, J.A; PORTOCARRERO, H. Recuperação de áreas degradadas por erosão no meio rural. **Manual técnico 34**, Pesagro Rio, 2012.

QUEIROGA, R.C.F.; NOGUEIRA, I.C.C.; BEZERRA NETO, F.; MOURA, A.R.B.; PEDROSA, J.F. Utilização de diferentes materiais como cobertura morta do solo no cultivo de pimentão. **Horticultura Brasileira**, v. 20, p. 416-418, 2002.

REGHIN. M. Y., OTTO, R. F., VINNE, J. V. D. Efeito da densidade de mudas por célula e do volume da célula na produção de mudas e cultivo da rúcula. **Ciência Agrotécnica**. Ponta Grossa, v.28, p. 287 – 295, 2004.

SILVA, F. DE A. S. E. & AZEVEDO, C. A. V. de. A New Version of The Assistat-Statistical Assistance Software. In: WORLD CONGRESS ON COMPUTERS IN AGRICULTURE, 4, Orlando-FL-USA: Anais... Orlando: American Society of Agricultural and Biological Engineers, 2006. p. 393-396.

SOUZA, J.L.; PEREIRA, V.A. Importância multifuncional de coberturas mortas em canteiros de cenoura no sistema orgânico. **Horticultura Brasileira**, v.29, n. 2, S4214-S4222, 2011.